637 research outputs found

    FORMATION OF NEUROMUSCULAR JUNCTIONS IN EMBRYONIC CELL CULTURES

    Full text link

    Hijacking the Fusion Complex of Human Parainfluenza Virus as an Antiviral Strategy

    Get PDF
    The receptor binding protein of parainfluenza virus, hemagglutinin-neuraminidase (HN), is responsible for actively triggering the viral fusion protein (F) to undergo a conformational change leading to insertion into the target cell and fusion of the virus with the target cell membrane. For proper viral entry to occur, this process must occur when HN is engaged with host cell receptors at the cell surface. It is possible to interfere with this process through premature activation of the F protein, distant from the target cell receptor. Conformational changes in the F protein and adoption of the postfusion form of the protein prior to receptor engagement of HN at the host cell membrane inactivate the virus. We previously identified small molecules that interact with HN and induce it to activate F in an untimely fashion, validating a new antiviral strategy. To obtain highly active pretriggering candidate molecules we carried out a virtual modeling screen for molecules that interact with sialic acid binding site II on HN, which we propose to be the site responsible for activating F. To directly assess the mechanism of action of one such highly effective new premature activating compound, PAC-3066, we use cryo-electron tomography on authentic intact viral particles for the first time to examine the effects of PAC-3066 treatment on the conformation of the viral F protein. We present the first direct observation of the conformational rearrangement induced in the viral F protein.IMPORTANCE Paramyxoviruses, including human parainfluenza virus type 3, are internalized into host cells by fusion between viral and target cell membranes. The receptor binding protein, hemagglutinin-neuraminidase (HN), upon binding to its cell receptor, triggers conformational changes in the fusion protein (F). This action of HN activates F to reach its fusion-competent state. Using small molecules that interact with HN, we can induce the premature activation of F and inactivate the virus. To obtain highly active pretriggering compounds, we carried out a virtual modeling screen for molecules that interact with a sialic acid binding site on HN that we propose to be the site involved in activating F. We use cryo-electron tomography of authentic intact viral particles for the first time to directly assess the mechanism of action of this treatment on the conformation of the viral F protein and present the first direct observation of the induced conformational rearrangement in the viral F protein.This work was supported by National Institute of Allergy and Infectious Diseases (NIAID), NIH, grants R01AI031971 and R01AI114736 to A.M. and by USA-Israel Binational Science Foundation (BSF) grant 2017293 to N.B.-T. E.Y. was partially funded by a fellowship from the Edmond J. Safra Center for Bioinformatics at Tel Aviv University. N.B.-T.’s research is supported in part by the Abraham E. Kazan Chair in Structural Biology, Tel Aviv University.S

    Antiviral activity of gliotoxin, gentian violet and brilliant green against Nipah and Hendra virus in vitro

    Get PDF
    Background: Using a recently described monolayer assay amenable to high throughput screening format for the identification of potential Nipah virus and Hendra virus antivirals, we have partially screened a low molecular weight compound library (8,000 compounds) directly against live virus infection and identified twenty eight promising lead molecules. Initial single blind screens were conducted with 10 M compound in triplicate with a minimum efficacy of 90% required for lead selection. Lead compounds were then further characterised to determine the median efficacy (IC), cytotoxicity (CC) and the in vitro therapeutic index in live virus and pseudotype assay formats. Results: While a number of leads were identified, the current work describes three commercially available compounds: brilliant green, gentian violet and gliotoxin, identified as having potent antiviral activity against Nipah and Hendra virus. Similar efficacy was observed against pseudotyped Nipah and Hendra virus, vesicular stomatitis virus and human parainfluenza virus type 3 while only gliotoxin inhibited an influenza A virus suggesting a non-specific, broad spectrum activity for this compound. Conclusion: All three of these compounds have been used previously for various aspects of anti-bacterial and anti-fungal therapy and the current results suggest that while unsuitable for internal administration, they may be amenable to topical antiviral applications, or as disinfectants and provide excellent positive controls for future studies

    Influenza Pandemic Waves under Various Mitigation Strategies with 2009 H1N1 as a Case Study

    Get PDF
    A significant feature of influenza pandemics is multiple waves of morbidity and mortality over a few months or years. The size of these successive waves depends on intervention strategies including antivirals and vaccination, as well as the effects of immunity gained from previous infection. However, the global vaccine manufacturing capacity is limited. Also, antiviral stockpiles are costly and thus, are limited to very few countries. The combined effect of antivirals and vaccination in successive waves of a pandemic has not been quantified. The effect of acquired immunity from vaccination and previous infection has also not been characterized. In times of a pandemic threat countries must consider the effects of a limited vaccine, limited antiviral use and the effects of prior immunity so as to adopt a pandemic strategy that will best aid the population. We developed a mathematical model describing the first and second waves of an influenza pandemic including drug therapy, vaccination and acquired immunity. The first wave model includes the use of antiviral drugs under different treatment profiles. In the second wave model the effects of antivirals, vaccination and immunity gained from the first wave are considered. The models are used to characterize the severity of infection in a population under different drug therapy and vaccination strategies, as well as school closure, so that public health policies regarding future influenza pandemics are better informed
    • …
    corecore